The Role of Models in Model-Assisted and Model-Dependent **Estimation for Small Areas**

Background

- There is an increasing need for Small Area Estimation (SAE), that is estimation of statistics for regional and other domains
- Some recent Small Area Estimation projects:
- SAIPE, U.S. Census Bureau's model-based Small Area Income and Poverty Estimation project
- EURAREA Project, Adaptation of model-dependent small area estimation methods into the European context
- Auxiliary information and statistical models have a crucial role in small area estimation
- This poster studies the accuracy of two conventional small area estimators and a new, hybrid estimator under various model formulations

SAE task: estimate Y(d)

- Population U, sample s, weights w
- Target: Y(d) = total of y in domain U(d)
- Simple but inefficient Horvitz-Thompson estimator:

$$(d) = \sum_{s(d)} w_i y_i$$

Efficient estimators

The most commonly used SAE estimators GREG (1) and EBLUP (2) utilize auxiliary information x, which is used to predict study variable y:

$$\hat{y}_i = f(x_i; \beta).$$

1) Model-assisted Generalized regression estimator GREG (Does take into account sampling weights):

$$\hat{Y}_{G}(d) = \sum_{U(d)} \hat{y}_{i} + \sum_{s(d)} w_{i}(y_{i} - \hat{y}_{i})$$

2) Model-dependent EBLUP (Relies on the model, ignores sampling design):

$$\hat{Y}_{E}(d) = \sum_{s(d)} y_{i} + \sum_{U(d)-s(d)} \hat{y}_{i}$$

3) Weighted EBLUP: Estimator formulation like EBLUP, but sampling design is taken into account by using weights in model estimation

Known properties of estimators

	Model-assisted GREG	Model-dependent EBLUP	Weighted EBLUP*			
Bias	Approximately unbiased	Bias depends on the model	?			
Variance	Variance usually large for small domains	Variance may be small even for small domains	?			
Mean square error	MSE approximately equal to variance	MSE dominated by bias	?			
Conf. intervals	Valid intervals can be constructed	Valid intervals not necessarily obtained	?			
*Properties of Weighted EBLUP (EBLUP-W) are not known since this estimator has not been used before						

Estimator	Model	Average absolute relative bias (%)		Average relative root MSE (%)	
		Expected domain sample size		Expected domain sample size	
		Minor	Major	Minor	Major
		(20-69)	(120+)	(20-69)	(120+)
GREG	$\mathbf{A} \ y_i = \mathbf{\beta}_0 + u_d + \mathbf{\varepsilon}_i$	0.2	0.1	13.7	5.6
	$\mathbf{B} y_i = \mathbf{\beta}_0 + u_d + \mathbf{\beta}_2 x_{2i} + \mathbf{\varepsilon}_i$	0.2	0.1	11.6	4.8
	$\mathbf{C} y_i = \boldsymbol{\beta}_0 + \boldsymbol{u}_d + \boldsymbol{\beta}_1 \boldsymbol{x}_{1i} + \boldsymbol{\varepsilon}_i$	0.2	0.0	7.8	3.3
EBLUP	$\mathbf{A} \ y_i = \mathbf{\beta}_0 + u_d + \mathbf{\varepsilon}_i$	22.9	21.7	22.9	21.8
	$\mathbf{B} y_i = \mathbf{\beta}_0 + u_d + \mathbf{\beta}_2 x_{2i} + \mathbf{\varepsilon}_i$	22.3	21.8	22.4	21.9
	$\mathbf{C} y_i = \boldsymbol{\beta}_0 + \boldsymbol{u}_d + \boldsymbol{\beta}_1 \boldsymbol{x}_{1i} + \boldsymbol{\varepsilon}_i$	1.8	0.7	2.8	2.2
Weighted	$\mathbf{A} \ y_i = \mathbf{\beta}_0 + u_d + \mathbf{\varepsilon}_i$	3.7	3.3	3.9	3.5
EBLUP	$\mathbf{B} y_i = \mathbf{\beta}_0 + u_d + \mathbf{\beta}_2 x_{2i} + \mathbf{\varepsilon}_i$	3.7	3.2	3.9	3.3
	$\mathbf{C} y_i = \boldsymbol{\beta}_0 + \boldsymbol{u}_d + \boldsymbol{\beta}_1 \boldsymbol{x}_{1i} + \boldsymbol{\varepsilon}_i$	3.5	3.3	3.5	3.3

Monte Carlo error distribution of the estimators in one domain

Model A, minor domain 15

Model B, minor domain 15

Results of the Monte Carlo study

Model C, minor domain 15

Risto Lehtonen, University of Helsinki Mikko Myrskylä, University of Pennsylvania Carl-Erik Särndal, Université de Montréal Ari Veijanen, Statistics Finland

Design of the Monte Carlo study

- This Monte Carlo study compares the accuracy of GREG, EBLUP, and EBLUP-W under various model formulations
- Population: N = 1,000,000, divided into 100 domains
- Samples: K = 1000 PPS samples of size n = 10,000
- Sampling weights vary between 54.6 and 596.5
- Study variable is generated as
 - $y_i = 1 + 2x_{1i} + 1.5x_{2i} + u_d + \varepsilon_i$
- For every sample k domain totals are estimated using GREG, EBLUP, EBLUP-W and three different models

Summary of results

- Model-assisted GREG
- Approximately unbiased for all models
- Variance large in small areas
- Accurate if domain sample size is large
- Model-dependent EBLUP
- Severy biased if model is not good
- Variance small even if model is weak
- Accurate if model is very good
- Weighted EBLUP
- Bias relatively small for all models
- Variance small even if model is weak
- Relatively accurate even for weak models and small areas

Some relevant literature

- Estevao, V.M. and Särndal, C.-E. (1999) The use of auxiliary information in design-based estimation for domains. Survey *Methodology*, 25, 213–221.
- Fay, R.E. and Herriot, R.A. (1979) Estimation of income for small places: an application of James-Stein procedures to census data. Journal of the American Statistical Association, 74, 269–277.
- Lehtonen, R., Särndal, C.-E. and Veijanen, A. (2005) Does the model matter? Comparing model-assisted and model-dependent estimators of class frequencies for domains. Statistics in Transition, 7, 649–673.
- Rao, J.N.K. (2003) Small Area Estimation. Hoboken: Wiley.
- Särndal, C.-E., Swensson, B. and Wretman, J.H. (1992) Model Assisted Survey Sampling. New York: Springer-Verlag.

